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1) Historical Introduction 
 
 The year was 1955. World War II was rapidly fading into the past as America 
grappled with the new challenges brought by the emerging Iron Curtain. I as a baby 
boomer was living the idyllic life of a fifties 4th grader straining to catch a TV glimpse of 
an emerging Elvis—complete with Teddy Bears—in  brilliant BW. Simultaneously, we 
red-blooded American boys were laughing at the “cheap Japanese junk” being passed 
out as prizes at local elementary schools during the annual fall galas. Little did any of us 
young machos know that Japan was ready to embark on an industrial revolution, one 
that would severely challenge American economic dominance—even more so than the 
Soviets were challenging America’s military dominance. 
 
 W. Edwards Deming, the acknowledged “Godfather” of the American quality 
movement, did not always enjoy the prominence that he had during his later years. In 
fact, Deming was somewhat frustrated with the industrial deaf ears inhabiting America 
right after World War II, who saw themselves as winners…and kings of the 
manufacturing world. Made in America was to be made right—no questions asked! So, 
what do you do with an opinionated genesis? Send him to Japan courtesy of the U.S. 
government. Perhaps the cantankerous Deming could help rebuild Japan’s bombed-out 
industrial base. While in Japan, Deming befriended Genichi Taguchi, a young Japanese 
electrical engineer eager to help in the rebuilding effort. Having found a dedicated 
disciple, Deming quickly trained the bright Taguchi in the twin quality pillars of Statistical 
Process Control and Factorial Design of Experiments (the subject of this workbook). 
Taguchi immediately improved the academic presentation of these methods making 
them readily understandable by other engineers in the struggling Japanese economy. 
The first big industrial test of Design of Experiments was soon to come. 
 
 INA Tile, a Japanese manufacturer of ordinary bathroom tile, had built a brand 
new kiln at a cost of US $500,000.00. Alas, the poor device had such an uneven heating 
pattern that all fired tiles broke and crumbled without fail before they could be shipped to 
market. Talk about being caught between a tile and a hard place! INA was on the verge 
of bankruptcy with no where to go! Enter the consultant Taguchi who immediately 
changed the problem from one of rebuilding the kiln to one of making an improved slurry 
mixture (the tile paste) that could withstand a heavy dose of uneven heating and still 
transform itself into perfectly good bathroom tile. In today’s language, we would call 
Taguchi’s problem change a “paradigm shift” since Taguchi refocused the thinking of 
INA plant officials to adjusting the slurry, instead of the economically unfeasible 
alternative of tearing down and rebuilding the kiln. 
 
 Pressing onwards towards solution, Taguchi identified eight active ingredients 
used in the slurry mixture. Each ingredient could be added to the mixture like salt or 
pepper, in various strengths. Using existing manufacturing records, Taguchi choose two 
representative strengths for each ingredient that he felt would keep the fired tiles within 
overall performance specifications. The goal was to find the optimal combination of all 
eight strength levels (one level per ingredient) leading to durable bathroom tile. “Wait a 
minute”, INA officials complained! “There isn’t enough money to carry out your test 
program. You’ll need 82  trials or 256  batches of slurry in order to test all possible slurry 
combinations. We simply can’t afford this!” Wrong! Oh so Wrong! 
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Taguchi was able to conduct a successful test program using a fractional factorial design 
consisting of 16  individual trials (and a few extra trials thrown in for good measure). INA 
was saved, and all of Japan rejoiced in the year of 1955. Remember Elvis? 
 

America remained asleep to the powerful new methods of quality until the early 
1970s when Japanese manufactured goods imported to this country were suddenly 
found superior to their American counterparts. The reason was a man named Deming 
who, two decades before, exported his statistical passions to Japan. The Japanese 
listened and Made in Japan took on a whole new meaning: quality products reasonably 
priced and built to last! So what about the present? The experimental design techniques 
presented in this paper are used around the world wherever quality goods are made. 
America is definitely no exception; and, in fact, is now considered the quality leader. As 
an ironic postscript, American industry enticed Genichi Taguchi himself to move to 
Detroit in the 70s, in order to help revitalize the automobile sector. There, Taguchi 
founded a company called the American Supplier Institute now run by his son, Shen. In 
a sense, the original Deming techniques, after undergoing initial testing and refinement 
in Japan, have returned to America as a fully-matured methodology. As Paul Harvey 
would say, “Now you know the rest of the story.” 
 
2) Factor-Only Fractional Factorials 

 
2.1 Overview Statement 
 

Fractional factorial experiments are experimental test programs that allow an 
engineer or technician to obtain statistically valid data using only a small fraction of the 
available test combinations. 
 
2.2 The Corn-Growing Example 
 

To see how fractional factorial experiments work, let’s consider a corn-growing 
experiment where the objective is to maximize the yield of corn in bushels per acre. The 
following are considered important to corn growth: brand of fertilizer, hybrid type, and 
daily-water amount. These are the inputs for the experiment, which is then conducted in 
order to observe the measurable response or output: bushels per acre. Other names for 
the various inputs are factors or stimuli. Factors are true variables when they are allowed 
to assume two or more values, called factor levels, during the course of experimentation. 
Assume that each of our factors in the corn growing experiment has precisely two levels, 
i.e. two different fertilizers, two different hybrids, and two different daily-water amounts. 
The three factors and their associated levels are shown in Table 1. 

  
FACTOR LEVEL -1  LEVEL 1 
Fertilizer Top Stalk Fat Ear 

Daily Water ½ Inch 1 Inch 
Hybrid Super A Super X 

 
Table 1: Factor-level Codes 

 
Now think of the corn-growing experiment as a simple manufacturing process whose 
product is yield. 
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Prior to making a “manufacturing run”, we select one fertilizer (from two possible 
choices), one water amount, and one hybrid as inputs to the production process. We 
then turn on the machine—i.e. conduct the experiment—and wait for the measurable 
product. Each of the factors is thought of as a dial on the side of the machine where dial 
positions represent the various factor levels. For two-level experiments such as ours, the 
factor levels are coded -1 and 1. The choice is quite arbitrary, but -1 is usually reserved 
for the factor level that we think produces the least desirable result: in our case, the 
more modest yield. We will assign the two codes, -1 and 1, as shown in the column titles 
for Table 1. 

 
Figure 1 is the corn-growing experiment viewed as a manufacturing process. 

When the machine is turned on for a given set of three inputs, it runs and hums—the 
little gears—until product is made. We can then reset the three dials at different levels 
and run the machine again, each time producing a product with, perhaps, a different 
measurable output.  

 

 
Figure 1: Corn Growing Experiment as a 

Manufacturing Process 
 

How do we manipulate the dials in order to produce the best possible results? Since the 
machine has three dials, each having two possible positions, there will be 823 =  total 
possible dial combinations as shown in Table 2.  

 
 

DIAL COM FERTILIZER WATER CORN 
1 -1 -1 -1 
2 -1 -1 1 
3 -1 1 -1 
4 -1 1 1 
5 1 -1 -1 
6 1 -1 1 
7 1 1 -1 
8 1 1 1 

 
Table 2: The Eight Possible Dial Combinations 

 

Inputs Bushels per acre

Both Observable
and Measurable

-1    1 Fertilizer

Hybrid

Water

Output
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One choice is to simply run all eight combinations (called full-factorial 
experimentation), observe the eight measurable outputs, and pick the winner. But 
suppose we had more than three factors, say fourteen? Is this feasible? Figure 2 
depicts a fourteen-dial process. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Fourteen-Dial Process 
 
Fourteen was the number of factors that the USAF examined in a major test program, 
called the Halon Replacement Program (see USAF Spotlight Box at the end of this 
Section), which was conducted to find a new aircraft-fire extinguishing agent. To find the 
total number of dial combinations for fourteen two-level factors, one computes the 
expression 

384,16214 =  
 
Can you imagine a table like Table 2 with 384,16  rows? We definitely have a problem! 
Who has the time, or money, to run such a massive experiment? Usually we are limited 
by time and money constraints to a handful of combinations—perhaps fifty—and we 
better pick the right fifty in order to accomplish the needed job. So, how do we do pick by 
experience, by guessing, by convenience? 
 

Ronald A. Fisher, a British agricultural statistician, studied the dial problem early 
in the last century and developed several statistical techniques to deal with this issue. 
These techniques were further refined through the years and were given the collective 
name of Design of Experiments (DOE), of which, fractional factorial experimentation is a 
major component. Dr. William Edwards Deming and Dr. George Box were early 
proponents of the newly developed DOE technique in the United States. George Box 
studied under Ronald Fisher, and, in fact, married Fisher’s daughter. Dr. Box and his 
bride returned to the United States and the University of Wisconsin to engage in a 
lifetime of teaching and writing. 

 

 Inputs

Output

-1    1

A

B

C

D

E

F

G

H

I

J

K

L

M

N



 6

A census bureau statistician, Deming was a recognized expert in sampling and 
experimental design prior to Word War II. After World War II, Dr. Deming took his 
expertise (including DOE) to Japan in order to help the Japanese people rebuild their 
war-torn economy. By 1960, Deming was a household name in Japan, and Japanese 
quality was rising at a meteoric rate. During his stay in Japan, Dr. Deming mentored Dr. 
Genichi Taguchi, a young Japanese electrical engineer. Dr. Taguchi worked hard to 
establish an understandable, systematic DOE methodology that would allow utilization of 
the powerful fractional factorial techniques by rank-and-file engineers. “Taguchi 
methods” refers to the fractional factorial system established and formalized by Dr. 
Taguchi. Taguchi’s system makes clever and very efficient use of visual charts, 
diagrams, and tables. It is a system very much preferred by engineer practitioners. 
 

  Continuing our discussion of the dial problem, let’s use a mathematical 
metaphor. When you studied high-school geometry, you were first introduced to 
“axioms” which are the building blocks of the entire geometric system. All theorems, no 
matter the complexity, were proved using these “axiomatic” building blocks. The 
knowledge contained in these building blocks allowed us to derive the totality of the 
knowledge within the system. Enter DOE and fractional factorial experimentation. By 
utilizing special mathematical arrays (matrices) having unique properties, the DOE 
methodology (as developed by Fisher, Box, Deming, Taguchi, etc.) allows the 
investigator to systematically select an “axiomatic” subset (or fraction!) of dial 
combinations that will form the backbone of the test program. In the case of the Halon 
Replacement Program, 32 dial combinations were needed, due to the many more 
factors, to build this “axiomatic” subset. The data generated from the “axiomatic” subset 
was then used to mathematically construct results for the remaining 352,16  runs! Notice 
that we are getting the needed results from a very small fraction ( 512/1 ) of the 352,16  
possibilities. A series of special mathematical arrays called orthogonal (orthogonal is a 
fancy name for perpendicular) arrays are the key DOE tools that allow an investigator to 
pick precisely the right fraction which defines the “axiomatic” subset.  

 
Table 3 is an example of one of these arrays having four rows and four columns 

with designation L4 (L is the last letter in the word orthogonal). Other sizes available for 
experiments that have two-level factors are L2, L8, L16, L32, L64, and L128: notice that 
two-level orthogonal arrays progress by powers of 2. For the curious, the series for 
three-level factors is L9, L27, L81, and L243.  The L4 shown on the next page is used for 
any experiment consisting of four separate “axiomatic” trials where each row is a code 
for running one of the trials; each column, a code for analyzing the resulting data. We 
are going to use the L4 array to both conduct and analyze our corn-growing experiment. 

 
1 -1 -1 -1 
1 -1  1  1 
1  1 -1  1 
1  1  1 -1 

 
Table 3: L4 Orthogonal Array 
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To start, assign a two-level factor to each column in this array, except the first column of 
all bolded 1s. As shown later, the first column is reserved for calculating the output 
average for all the axiomatic trials. Since we have three two-level factors, we can make 
column assignments as shown in Table 4. 
 

AVERAGE FERT WATER CORN 
1 -1 -1 -1 
1 -1  1  1 
1  1 -1  1 
1  1  1 -1 

 
Table 4: Column Assignments 

 
The next step is to add a fifth column called bushels (the output variable) and replace 
the -1’s and 1’s in the factor columns with the actual factor levels. Using the factor-level 
codes from Table 1, Table 5 shows the result known as the execution array. 
 

AVERAGE FERT WATER CORN BUSHELS 
1 Top Stalk ½ inch Super A  
1 Top Stalk  1 inch Super X   
1  Fat Ear ½ inch Super X   
1  Fat Ear  1 inch Super A  

 
Table 5: Execution array 

 
Each row in the execution array tells the investigator how to set one of the four 
axiomatic-dial combinations in the corn-growing experiment. For example, row 3 tells the 
investigator to conduct a test using Fat Ear fertilizer, a daily water amount of ½ inch, and 
the Super X hybrid throughout a standardized growth period. At the end of this trial, the 
results for row 3 are recorded in the bushels column. This process is repeated for rows 
1, 2, and 4. We do not have to conduct the corn-growing experiment using the row 
sequence 1,2,3,4. In fact, this experiment would probably run in parallel using four 
adjacent growing fields. Table 6 shows the completed execution array. 
 

AVERAGE FERT WATER CORN BUSHELS 
1 Top Stalk ½ inch Super A 120 
1 Top Stalk  1 inch Super X  109 
1  Fat Ear ½ inch Super X  128 
1  Fat Ear  1 inch Super A 46 

 
Table 6: Completed Execution Array 

  
 The entries in the Bushels column will now allow the investigator to develop a 
linear equation that expresses bushels in terms of a simple linear combination of 
fertilizer (F), Water (W) and Corn (C): 
 

CcWcFccBushels 3210 +++=  



 8

To generate the four coefficients 3210 ,,, cccc  go  back and replace the named factor 
levels in Table 6 by their -1 and 1 equivalents from Table 4 in order to obtain Table 7, 
which is called the analysis array. 
 

AVERAGE FERT WATER CORN BUSHELS 
1 -1 -1 -1 120 
1 -1 1 1  109 
1 1 -1 1  128 
1 1 1 -1 46 

 
Table 7: Analysis Array 

 
Each coefficient is generated using the column to which the associated factor is 
assigned and all four of the data values:120 , 109 , 128 , and 46 . Since 0c  is not 
associated with a variable, it is generated using the AVERAGE column and the 
BUSHELS column in the following fashion 
 

75.100
4

461128110911201
0 =

+++
=

xxxxc  

 
The divisor of 4 corresponds to the 4 data points. Note that c0 is simply the average yield 
from all four tests. To obtain the coefficient 1c , we perform a similar calculation using the 
FERTilizer column and BUSHELS column: 
 

75.13
4

4611281109)1(120)1(
1 −=

++−+−
=

xxxxc  

 
Generating 2c  and 3c  in like fashion, the completed equation becomes: 
 

CWFBushels 75.1725.2375.1375.100 +−−=  
 
The above equation will reproduce any data point in the original data set. For example, 
Row 3 produced the value 128  when the experiment was run at the levels 1, -1, and 1 
(Fat Ear, ½ inch, Super X). If we substitute 1, -1, and 1 into the above equation, the 
result becomes: 
 

128)1(75.17)1(25.23)1(75.1375.100 =+−−−= xxxBushels  
 
Notice the last result matches the original data point, as it should! 

 
Going back to the original dial problem, how do we choose the winner? How do 

we choose the right level of fertilizer, water amount, and hybrid in order to maximize the 
yield in bushels? The equation itself is the key to the answer. If our objective is to make 
Bushels as large as possible, the way do this is to set 1−=F (Top Stalk), 1−=W  (½ 
inch), and 1=C  (Super A). Substituting the three values -1, -1, and 1, we obtain: 
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5.155)1(75.17)1(25.23)1(75.1375.100 =+−−−−= xxxBushels  
 

Notice that the maximum yield in bushels occurs at a dial combination not in the 
original set of four. The final step is to perform a confirmation run into order to “prove” 
the value generated by the equation. Since three two-level factors have eight possible 
dial combinations, and we ran four axiomatic-dial combinations to obtain our equation, 
the experimental design is called a ½ fractional factorial. This was exactly the same 
process (in miniature) as the process used in the Halon Replacement Program. In the 
Halon Replacement Program, since a L32 (32 axiomatic-dial combinations) was used to 
examine the 16,384 possible dial combinations, the associated experimental design was 
called a 1/512 fractional factorial. 

 
What are some methods that we can use to visualize the data? One of the 

easiest is a bar chart, Figure 4 below, showing relative factor strength as measured by 
the absolute value of the factor coefficient. 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 4: Relative Factor Strength 
 
Other methods of visualizations are  also available such as an Effects Diagram and 
Cube Plot(s), but Figure 4 is about as simple as you get and it aligns well in structure 
with existing Pareto displays. 

 
2.3 DOE Summary Points 

 
In this section, we have used DOE and a fractional-factorial design to solve a 

problem in agriculture. Additionally, we have integrated the mathematics of algebra with 
some very practical biology. As you can see, the fractional factorial technique was used 
to save the investigator some very valuable time and money. In this case, the corn-
growing experiment was conducted at one-half the cost of an equivalent “full-factorial” 
test program. Can you imagine the money saved in the USAF Halon Replacement 
Program! 
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The success of fractional factorial experimentation depends, in part, on the skill of the 
investigator in identifying the important factors that have potential for driving the process 
under investigation. Of particular importance is the early identification of potentially 
potent combinations of two variables that might influence the “manufacturing process”. 
These two-factor interactions are then assigned to columns just like factors, and the 
experiment, though now more complicated, proceeds in a generally like fashion. 
 
2.4 USAF Success Story 

  
The Air Force Research Laboratory (AFRL), headquartered at Wright-Patterson 

Air Force Base in Dayton, Ohio, is home to more than 6000 scientists and engineers 
responsible for maintaining America’s technological pre-eminence in the air! New 
technology needs to be thoroughly tested within budgetary constraints before it is 
released into the Air Force inventory. AFRL uses Design of Experiments (DOE) and the 
associated fractional-factorial methodologies as a way to achieve both objectives. 

 
 For example, in the mid 90s, the Air Force embarked on a program to replace the 
then-used Halon fire-extinguishing agent with an alternative agent, one that would not 
harm the earth’s ozone layer. The selected replacement agent had to be operational 
before the year 2000 with an extinguishing capability matching or exceeding Halon. 
Several million dollars were allocated to a program with the goal of finding and 
thoroughly testing an alternative fire-extinguishing agent. Initial brainstorming revealed 
several dozen factors that influence the propensity of an aircraft to catch on fire, and the 
associated ability of an extinguishing agent to put the fire out. The factors were then 
rank-ordered by importance; and, from the rank-ordered factors, the first 14  were 
selected for actual testing.  Each factor, such as airflow velocity, had a least two different 
values, called levels.  If all possible factor-level combinations had actually been tested, 

384,16214 =  individual tests would have been needed. Budgetary and time constraints 
definitely did not allow for this “full-factorial” and extremely costly approach. Fortunately, 
AFRL scientists and engineers were knowledgeable in fractional-factorial experimental 
design methods. They were able to construct a highly efficient, statistically valid test 
program consisting of 32  individual tests. This program, once conducted, would allow for 
the precise extraction of the needed information at a cost that was 512/1  the cost of the 
corresponding full factorial! In retrospect, the Halon Replacement Program proved to 
be a major success, generating a technically valid product delivered well within the time 
and budgetary constraints. Design of Experiments and associated fractional-factorial 
methodologies helped made it so. 
 

Major AFRL test programs are not the only opportunities available for utilization 
of DOE. Throughout the years, both big and small AFRL test programs have been 
successfully conducted using the methods introduced in this paper. DOE has been the 
cornerstone of many successful test programs advancing the following aircraft 
technologies—sensors, aerodynamics, high-strength micro-materials, large structures, 
propulsion, power systems, human subsystems, pilot readiness and training, and 
weapon system delivery and effectiveness—to name a few. 
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3) The Analysis of Variance (ANOVA) 
 

3.1 Overview Statement 
 

ANOVA is a statistical-based error methodology (actually based on the 
Pythagorean Theorem!) that one can use in conjunction with DOE and fractional-factorial 
experimental designs. ANOVA can only be used when there is a valid way to ascertain 
random error from the experimental results. In the DOE toolkit, there are several 
different powerful methods that will allow a researcher to make an estimate of this error. 
In this brief introduction, we will look at only one of these methods, called replication. 

 
Once an error estimate is made, it is given the name “noise”. Likewise, 

associated estimates of factor and interaction (ALT 6) strengths are called “signals”. 
ANOVA will allow us to statistically examine the magnitude of signal-to-noise ratios in 
order to see if factor/interaction strengths are truly significant.   
 
3.2 Continuing the Corn-Growing Example 

 
 To see how ANOVA works, reconsider the corn-growing experiment where each 
of the four trials has been replicated (i.e. repeated for two rounds). Table 8 below shows 
the final result. 
 

AVERAGE FERT  WATER CORN BUSHELS 
ROUND 1 

BUSHELS 
ROUND 2 

1 Top Stalk ½ inch Super A 120 114 
1 Top Stalk 1 inch Super X 109 111 
1 Fat Ear ½ inch Super X 128 123 
1 Fat Ear 1 inch Super A 46 53 

 
Table 8: Completed Execution Array with Two Replications 

 
  As before, the investigator can develop a linear equation from the associated 
analysis array that again expresses bushels in terms of a simple linear combination of 
Fertilizer (F), Water (W) and Corn (C): 
 

CcWcFccBushels 3210 +++=  
 

Table 9 is the associated analysis array for our replicated experiment. 
 

AVERAGE FERT WATER CORN BUSHELS 
ROUND 1 

BUSHELS 
ROUND 2 

1 -1 -1 -1 120 114 
1 -1 1 1 109 111 
1 1 -1 1 128 123 
1 1 1 -1 46 53 

 
Table 9: Analysis Array with Replications 
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As explained in Section 2, each of the four coefficients 3210 ,,, cccc  is generated using 
the column to which the associated factor is assigned. But now, all eight data values 
120 , 109 , 109 , 46  and 114 , 111, 123 , 53  are used. To generate the constant 
coefficient 0c ,  use the AVERAGE column and the two BUSHELS columns as shown in 
the following fashion: 
 

5.100
8

]5346[1]123128[1]111109[1]114120[1
0 =

+++++++
=

xxxxc  

 
The divisor of 8  corresponds to our 8  data points. Note that again 0c  is simply the 
average yield from all eight tests. The remaining three coefficients are done in 
analogous fashion. To obtain 1c c1, use the FERT column and the two BUSHELS 
columns as shown: 
 

0.13
8

]5346[1]123128[1]111109[)1(]114120[)1(
1 −=

+++++−++−
=

xxxxc  

 
Generating 2c  and 3c  in like fashion, the completed equation becomes: 
 

CWFBushels 25.1775.200.135.100 +−−=  
 
The above equation will now reproduce the average for any trial in the original data set. 
For example, Row 3 produced (as the result of two replications) an average value of 

5.125 . When the levels 1, -1, and 1 (Fat Ear, ½ inch, Super X) are substituted into the 
above equation, the result becomes: 
 

5.125)1(25.17)1(75.20)1(0.135.100 =+−−−= xWxxBushels  
 
The calculated value matches the average of the two Row 3 data values. To finish this 
analysis, one should construct some sort of visual display such as a Bar Chart, Effects 
Diagram, or Cube Plot.  
 
 Going back to the original problem, how do we know if the three factor 
coefficients are large enough to represent a true signal? Enter ANOVA and error 
analysis. To start, look at the two values associated with Row 1: 120  bushels and 114  
bushels. Why are these two values different? The difference is due to all of the untested 
factors that come into play when we ran the corn-growing experiment. These untested 
and hidden factors are haphazardly mixed in an unknown fashion and constitute the 
random error in the experiment. One estimate of this random error would simply be the 
range of 6114120 =−  associated with the two data points. ANOVA refines this initial 
estimate by squaring the 6  and then dividing by 2  (the number of data values per row) 
to obtain a noise estimate for Row 1 of 18 . Similar calculations for Rows 2, 3, and 4 
result in the values 2 , 5.12 , and 5.24 . Each of the four values 18 , 2 , 5.12 , and 5.24  is 
an independent estimate of the random experimental error and has been generated 
under a unique set of factor/level combinations. 
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Notice that these four estimates vary widely. The statistician uses the average of the four 
estimates, 25.14 , to measure the sum of squares for noise. Since four ranges were used 
to build this average, we say this average sum of squares has four degrees of freedom. 

 How do we calculate the signals for each of the three factors and overall 
average? Simply take each of the four coefficients, square it, and then multiply by 8  (the 
total number of data points). The resulting number is called the sum of squares to the 
associated factor effect and is a measure of signal strength. For two-level factors, each 
signal will have one degree of freedom. The sum of squares for the overall average 
coefficient 0c also has one degree of freedom. For any given experiment, the total for 
degrees of freedom is simply equal to the total number of data points. In our example, 
the total for degrees of freedom is eight. In a replicated experiment, such as ours, half of 
the degrees of freedom are assigned to error or noise. The remaining degrees of 
freedom are divided evenly amongst the overall average and factor(s) sum of squares. 
More complicated schemes for divvying up the total degrees of freedom exist. These 
partitioning schemes will depend on how many factor levels we have and the statistical 
nature of our noise estimate. 

 
 Table 10 (called an ANOVA table) arranges all of the important signal and noise 
data from the previous calculations. In Table 10, DF is the abbreviation for degrees of 
freedom. 

 

AVERAGE 
OR FACTOR 

SUM OF 
SQUARES DF SIGNAL DIVIDED 

BY NOISE 

TRIP VALUE AT 
99% 

SIGNIFICANCE 
Average 80,802. 1 5670.3 21.2 
Water 3444.5 1 237.55 21.2 
Corn 2380.5 1 164.17 21.2 
Fertilizer 1352.0 1 93.24 21.2 
     
Noise  14.25 4 Skip   Skip 
 

Table 10: ANOVA Table for the Replicated Experiment 
 
 In Column 1, the overall average and each experimental factor/interaction are 
given a row. The noise sum-of-squares estimate is also given a row at the bottom, 
preferably separated from the potential signal sum-of-squares estimates by an empty 
row, since the sum of squares for noise is to serve as the common divisor. Sum-of-
squares calculations are entered in Column 2. The associated degrees of freedom for 
each row are entered in Column 3. The Column 4 values are the actual signal-to-noise 
ratios.  

 
 Signal-to-noise ratios deserve more explanation. How big does a signal-to-noise 
ratio have to be in order to “prove” that the signal is not due to the same random factor 
effects that created the noise? Sir Ronald Fisher, a British statistician, did extensive 
research on this topic in the early 1900s and developed a series of tables (called F 
tables) that allow an experimenter to answer this question. 
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All F tables are constructed for a given significance level (to be explained) and set up so 
that entries in the body of the table are a function of the number of degrees of freedom 
represented in both the numerator (average/factor/interaction) and denominator (noise). 
Table 11 below is a condensed Fisher (or F) table, containing trip values corresponding 
to %90  significance, %95  significance, and %99  significance. Table 11 is good for 
signal-to-noise ratios having 1 degree of freedom in the numerator, characteristic of two-
level factorial designs. 

 

Denominator 
Degrees of 
Freedom 

90% 
Trip 

Value 

95% 
Trip 

Value 

99% 
Trip 

Value 
    

1 39.9 161.4 4052.00 
2 8.53 18.51 98.5 
3 5.54 10.13 34.1 
4 4.54 7.71 21.2 
5 4.06 6.61 16.3 
6 3.78 5.99 13.8 
7 3.59 5.59 12.3 
8 3.46 5.31 11.3 
9 3.36 5.12 10.6 

10 3.28 4.96 10.0 
15 3.07 4.54 8.68 
20 2.97 4.35 8.10 

infinite 2.70 3.84 6.63 
 

Table 11: Fisher Table for Three Significance Levels 
And One Degree-of-Freedom in the Numerator 

 
 Significance levels are simply the probability that sum-of-square size is actually 
due to the strength of the tested factor, and not to the same random unknown factor 
effects causing the noise. When we say that a factor is 90% significant, we are %90  
certain that the sum of squares exhibited by that factor is due to the strength of that 
factor, and not to unknown random factor effects. Another way of looking at it is that we 
only have a %10  chance of being wrong. Associated with each numerator degree of 
freedom, denominator degree of freedom, and experimenter-chosen significance level is 
a so-called trip value for the signal-to-noise ratio. If the calculated signal-to-noise ratio 
exceeds the trip value, then the signal is significant. Trip values get larger as the 
significance level increases. When degrees of freedom increase, trip values get smaller. 
In our example, the trip value for a denominator with 4 degrees of freedom, a numerator 
with 1 degree of freedom, and a %99  chosen significance level is 2.21 . All factors 
exceed the trip value with plenty of room to spare! Hence, in this experiment, they are all 
highly significant exceeding %99 . Be aware that this is not always the case. The overall 
average is usually significant no matter what. Its significance is due to the fact that we 
actually performed an experiment and got something that we could measure; where, 
prior to the experiment, we had nothing. 
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A note for the mathematically curious: both fractional factorial Arrays and DOE work as they do because of 
basic Pythagorean properties that extend to multidimensional space. These properties enable the minimal 
orthogonal basis as represented in the orthogonal array to cleanly partition the test data into components, 
where each component is the amount attributed to just one factor or two-factor interaction. The process is 
similar to that of resolving a velocity vector into horizontal and vertical components using trigonometry. 
 
4) Vane-Cleaning Example 

 
4.1 Problem Statement 
 
A particular gas-turbine engine vane becomes corroded during service and requires 
periodic cleaning. Very high pressure water is delivered through a tiny nozzle orifice in 
order to cleanse the vanes. An experiment is designed and conducted in order to 
maximize cleansing effectiveness. The response variable—to be minimized—is percent 
contamination remaining after the cleansing procedure. 
 
4.2 Professional Solution and Analysis 
 
 If using a DOE-based experimental test program, contractors will typically include 
in their reports to the USAF the following types of information: Table 12, Figure 6, Table 
13, and Table 14.  It will be up to you, the USAF project engineer, to ask for additional 
data, which allows for the pealing back of the onion. Many DOE workshops are currently 
available to help you fill in the information gaps deliberately shown below if you desire or 
have a need to do so.  
   

FACTOR -1 LEVEL 1 LEVEL 

O: Orifice Size 0.007” 1.0” 
S: Standoff Distance 0.5” 1.0” 
P: Pressure 20KSI 35KSI 
F: Feed Rate 20ipm 30ipm 
R: RPM 1500rpm 2000rpm 

 
Table 12: Factors and Levels 

 

0
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Figure 6: Factor and Interaction Strengths 
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Note: The OS and OP interactions are thought to be significant. Interactions are particularly potent 
combinations of two or more factors akin to drug interactions. Interactions are mentioned but not treated in 
this paper 
 

Grade C Fr PF PR SF SR OR SP 
OF <Alias 

GM O S OS P OP F R % 

1 -1 -1 -1 -1 -1 -1 -1 10.1 

1 -1 -1 -1 1 1 1 1 11.9 

1 -1 1 1 -1 -1 1 1 9.2 

1 -1 1 1 1 1 -1 -1 11.3 

1 1 -1 1 -1 1 -1 1 8.9 

1 1 -1 1 1 -1 1 -1 13.5 

1 1 1 -1 -1 1 1 -1 7.8 

1 1 1 -1 1 -1 -1 1 13.1 

 
Table 12: L8 Orthogonal Array for Vane Cleaning Example 

Showing Confounding Pattern and Design Grade 
 

 Factor  Sum(1)  Sum(-1) ic   SS 
 
 GM  85.8  0.0  10.725  920.205 
 O  43.3  42.5  .1  .08 
 S  41.4  44.4  -.375  1.125 
 OS  42.9  42.9  0  0 
 P  49.8  36  1.725  23.805 
 OP  39.9  45.9  -.75  4.5 
 F  42.4  43.4  -.125  .125 
 R  43.1  42.7  .05  .02 
 Totals        949.86 
 
 Source  DF  SS  Fratio  Significance 
 
 GM  1  920.205 19,051.86 >> 99% 
 P  1  23.805  492.85             99% 
 OP  1  4.5  93.16        99% 
 S  1  1.125  23.29        95% 
 O  1  .08  must include 
 
 Error  3  .043  divisor 

 
Table 13: Detailed ANOVA Table 
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Linear Model and Optimal Setting: 
 

OSOPPC 1.0375.075.0725.1725.10% +−−+=  
 
For the optimal setting which minimizes percent contamination, set 1−=P . Set 1−=OP , 
which implies 1=O  . Finally set 1=S  to obtain 
 

)1(1.0)1(375.0)1(75.0)1(725.1725.10% xxxxC +−−−+= . 
 
 
 
 

DOE Resources 
 
 
Books on Statistics 
 
1) Dictionary/Outline of Basic Statistics, Freund and Williams, Dover Publications, 1991 
2) Statistics in Plain English, Harvey Brightman, South Western, 1986 
3) Statistics for Business and Economics; Anderson, Sweeny, Williams; West, 1994 
 
Books on DOE 
 
4) Statistics for Experimenters: Box, Hunter, and Hunter; Wiley Interscience, 1978 
5) Taguchi Techniques for Quality Engineering (2nd), Philip Ross, McGraw Hill, 1996 
6) Understanding Industrial Experimentation, Dr. Donald Wheeler, SPC Press, 1988 
 
DOE Software 
 
7) DOE PAC by PQ Systems of Miamisburg, Ohio: call (937) 885-2255 
8) Microsoft Excel can be set up to do DOE: AFRL provided diskettes 
9) Other Software: Statgraphics, Design Cube, MathCAD 
 
 


